Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
2.
Case Rep Oncol ; 17(1): 490-496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545086

RESUMO

Introduction: Controlled randomized trials, molecular analytics, and guideline recommendations have so far been irreplaceable tools to ensure appropriate treatment and decision-making for physicians and patients. Individual patient models are increasingly complementing these methods, particularly in the case of advanced cancers, rare cancers, and cancers of unknown primary (CUP), as in these cases comprehensive clinical evidence is unavailable, often resulting in poor treatment success, even after stratification. Case Presentation: Here we report a 53-year-old patient with CUP with axillary lymph node metastases for whom patient-derived 3D (PD3D®) tumor organoids successfully guided personalized treatment. PD3D tumor models were used to screen drugs that are effective at the suspected primary tumor site. The screen revealed sensitivity to doxorubicin, which is not indicated for CUP treatment but hinted toward breast cancer that was subsequently confirmed as triple-negative breast cancer (TNBC). The patient showed partial remission to first-line doxorubicin and cyclophosphamide, which were followed by docetaxel. Subsequent radiotherapy eventually led to a complete remission, which is still ongoing. Conclusion: We conclude that pre-therapeutic drug sensitivity screening with PD3D tumor models can be essential in guiding and enabling an effective personalized treatment for patients with hard-to-treat cancers, like CUP or TNBC.

3.
Talanta ; 270: 125518, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128277

RESUMO

Multiple sclerosis (MS) is a prevalent immune-mediated inflammatory disease of the central nervous system inducing a widespread degradation of myelin and resulting in neurological deficits. Recent advances in molecular and atomic imaging provide the means to probe the microenvironment in affected brain tissues at an unprecedented level of detail and may provide new insights. This study showcases state-of-the-art spectroscopic and mass spectrometric techniques to compare distributions of molecular and atomic entities in MS lesions and surrounding brain tissues. MS brains underwent post-mortem magnetic resonance imaging (MRI) to locate and subsequently dissect MS lesions and surrounding white matter. Digests of lesions and unaffected white matter were analysed via ICP-MS/MS revealing significant differences in concentrations of Li, Mg, P, K, Mn, V, Rb, Ag, Gd and Bi. Micro x-ray fluorescence spectroscopy (µXRF) and laser ablation - inductively coupled plasma - time of flight - mass spectrometry (LA-ICP-ToF-MS) were used as micro-analytical imaging techniques to study distributions of both endogenous and xenobiotic elements. The essential trace elements Fe, Cu and Zn were subsequently calibrated using in-house manufactured gelatine standards. Lipid distributions were studied using IR-micro spectroscopy and matrix assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI). MALDI-MSI was complemented with high-resolution tandem mass spectrometry and trapped ion mobility spectroscopy for the annotation of specified phospho- and sphingolipids, revealing specific lipid species decreased in MS lesions compared to surrounding white matter. This explorative study demonstrated that modern molecular and atomic mapping techniques provide high-resolution imaging for relevant bio-indicative entities which may complement our current understanding of the underlying pathophysiological processes.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Encéfalo/diagnóstico por imagem , Lipídeos
4.
Commun Biol ; 6(1): 1229, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052926

RESUMO

The IGF2BP family of RNA binding proteins consists of three paralogs that regulate intracellular RNA localization, RNA stability, and translational control. Although IGF2BP1 and 3 are oncofetal proteins, IGF2BP2 expression is maintained in many tissues, including the heart, into adulthood. IGF2BP2 is upregulated in cardiomyocytes during cardiac stress and remodeling and returns to normal levels in recovering hearts. We wondered whether IGF2BP2 might play an adaptive role during cardiac stress and recovery. Enhanced expression of an IGF2BP2 transgene in a conditional, inducible mouse line leads to dilated cardiomyopathy (DCM) and death within 3-4 weeks in newborn or adult hearts. Downregulation of the transgene after 2 weeks, however, rescues these mice, with complete recovery by 12 weeks. Hearts overexpressing IGF2BP2 downregulate sarcomeric and mitochondrial proteins and have fragmented mitochondria and elongated, thinner sarcomeres. IGF2BP2 is also upregulated in DCM or myocardial infarction patients. These results suggest that IGF2BP2 may be an attractive target for therapeutic intervention in cardiomyopathies.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Adulto , Animais , Humanos , Camundongos , Cardiomiopatias/metabolismo , Cardiomiopatia Dilatada/genética , Miócitos Cardíacos/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
J Neurooncol ; 165(1): 91-100, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37907716

RESUMO

PURPOSE: Since glioma therapy is currently still limited until today, new treatment options for this heterogeneous group of tumours are of great interest. Eukaryotic initiation factors (eIFs) are altered in various cancer entities, including gliomas. The purpose of our study was to evaluate the potential of eIFs as novel targets in glioma treatment. METHODS: We evaluated eIF protein expression and regulation in 22 glioblastoma patient-derived xenografts (GBM PDX) after treatment with established cytostatics and with regards to mutation profile analyses of GBM PDX. RESULTS: We observed decreased expression of several eIFs upon temozolomide (TMZ) treatment independent from the phosphatidylinositol 3-kinase (PI3K)/ AKT/ mammalian target of the rapamycin (mTOR) signalling pathway. These effects of TMZ treatment were not present in TMZ-resistant PDX. Combination therapy of regorafenib and TMZ re- established the eIF/AKT/mTOR axis. CONCLUSION: Our study provides novel insights into chemotherapeutic effects on eIF regulation in gliomas and suggests that eIFs are interesting candidates for future research to improve glioma therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/uso terapêutico , Temozolomida/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Dacarbazina/uso terapêutico , Dacarbazina/farmacologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Serina-Treonina Quinases TOR/metabolismo
6.
Cancers (Basel) ; 15(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38001610

RESUMO

Drug resistance is a common cause of therapy failure in head and neck squamous cell carcinoma (HNSCC). One approach to tackling it is by targeting fundamental cellular processes, such as translation. The eukaryotic translation initiation factor 2α (EIF2α) is a key player in canonical translation initiation and integrates diverse stress signals; when phosphorylated, it curbs global protein synthesis. This study evaluates EIF2α expression and phosphorylation in HNSCC. A small-molecule inhibitor of EIF2α dephosphorylation, salubrinal, was tested in vitro, followed by viability assays, flow cytometry, and immunoblot analyses. Patient-derived 3D tumor spheres (PD3DS) were cultured with salubrinal and their viability assessed. Lastly, salubrinal was evaluated with standard-of-care chemotherapeutics. Our analysis of RNA and proteomics data shows elevated EIF2α expression in HNSCC. Immunohistochemical staining reveals increasing EIF2α abundance from premalignant lesions to invasive and metastatic carcinoma. In immunoblots from intraoperative samples, EIF2α expression and steady-state phosphorylation are higher in HNSCC than in neighboring normal tissue. Inhibition of EIF2α dephosphorylation decreases HNSCC cell viability and clonogenic survival and impairs the G1/S transition. Salubrinal also decreases the viability of PD3DS and acts synergistically with cisplatin, 5-fluorouracil, bleomycin, and proteasome inhibitors. Our results indicate that pharmacological inhibition of EIF2α dephosphorylation is a potential therapeutic strategy for HNSCC.

7.
Pathologie (Heidelb) ; 44(Suppl 3): 229-231, 2023 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-37987811

RESUMO

The situation regarding digital pathology in Austria is manageable compared to other countries. Active Austrian examples are the consortium EMPAIA, the private-public partnership Bigpicture, the Austrian Society for Clinical Pathology and Molecular Pathology (OEGPath), the company TissueGnostics, and the Austrian Platform for Personalized Medicine (OEPPM).


Assuntos
Patologia Clínica , Telepatologia , Áustria , Patologia Molecular , Medicina de Precisão
8.
Neurooncol Adv ; 5(1): vdad136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024240

RESUMO

Background: The prognostic roles of clinical and laboratory markers have been exploited to model risk in patients with primary CNS lymphoma, but these approaches do not fully explain the observed variation in outcome. To date, neuroimaging or molecular information is not used. The aim of this study was to determine the utility of radiomic features to capture clinically relevant phenotypes, and to link those to molecular profiles for enhanced risk stratification. Methods: In this retrospective study, we investigated 133 patients across 9 sites in Austria (2005-2018) and an external validation site in South Korea (44 patients, 2013-2016). We used T1-weighted contrast-enhanced MRI and an L1-norm regularized Cox proportional hazard model to derive a radiomic risk score. We integrated radiomic features with DNA methylation profiles using machine learning-based prediction, and validated the most relevant biological associations in tissues and cell lines. Results: The radiomic risk score, consisting of 20 mostly textural features, was a strong and independent predictor of survival (multivariate hazard ratio = 6.56 [3.64-11.81]) that remained valid in the external validation cohort. Radiomic features captured gene regulatory differences such as in BCL6 binding activity, which was put forth as testable treatment target for a subset of patients. Conclusions: The radiomic risk score was a robust and complementary predictor of survival and reflected characteristics in underlying DNA methylation patterns. Leveraging imaging phenotypes to assess risk and inform epigenetic treatment targets provides a concept on which to advance prognostic modeling and precision therapy for this aggressive cancer.

9.
Inflamm Regen ; 43(1): 53, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904253

RESUMO

BACKGROUND: Chronic non-healing wounds pose a global health challenge. Under optimized conditions, skin wounds heal by the formation of scar tissue. However, deregulated cell activation leads to persistent inflammation and the formation of granulation tissue, a type of premature scar tissue without epithelialization. Regenerative cells from the wound periphery contribute to the healing process, but little is known about their cellular fate in an inflammatory, macrophage-dominated wound microenvironment. METHODS: We examined CD45-/CD31-/CD34+ preadipocytes and CD68+ macrophages in human granulation tissue from pressure ulcers (n=6) using immunofluorescence, immunohistochemistry, and flow cytometry. In vitro, we studied macrophage-preadipocyte interactions using primary human adipose-derived stem cells (ASCs) exposed to conditioned medium harvested from IFNG/LPS (M1)- or IL4/IL13 (M2)-activated macrophages. Macrophages were derived from THP1 cells or CD14+ monocytes. In addition to confocal microscopy and flow cytometry, ASCs were analyzed for metabolic (OXPHOS, glycolysis), morphological (cytoskeleton), and mitochondrial (ATP production, membrane potential) changes. Angiogenic properties of ASCs were determined by HUVEC-based angiogenesis assay. Protein and mRNA levels were assessed by immunoblotting and quantitative RT-PCR. RESULTS: CD45-/CD31-/CD34+ preadipocytes were observed with a prevalence of up to 1.5% of total viable cells in human granulation tissue. Immunofluorescence staining suggested a spatial proximity of these cells to CD68+ macrophages in vivo. In vitro, ASCs exposed to M1, but not to M2 macrophage secretome showed a pro-fibrotic response characterized by stress fiber formation, elevated alpha smooth muscle actin (SMA), and increased expression of integrins ITGA5 and ITGAV. Macrophage-secreted IL1B and TGFB1 mediated this response via the PI3K/AKT and p38-MAPK pathways. In addition, ASCs exposed to M1-inflammatory stress demonstrated reduced migration, switched to a glycolysis-dominated metabolism with reduced ATP production, and increased levels of inflammatory cytokines such as IL1B, IL8, and MCP1. Notably, M1 but not M2 macrophages enhanced the angiogenic potential of ASCs. CONCLUSION: Preadipocyte fate in wound tissue is influenced by macrophage polarization. Pro-inflammatory M1 macrophages induce a pro-fibrotic response in ASCs through IL1B and TGFB1 signaling, while anti-inflammatory M2 macrophages have limited effects. These findings shed light on cellular interactions in chronic wounds and provide important information for the potential therapeutic use of ASCs in human wound healing.

10.
JHEP Rep ; 5(11): 100854, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37791376

RESUMO

Background & Aims: Cholestatic liver injury is associated with c-Jun N-terminal kinases (JNK) activation in distinct cell types. Its hepatocyte-specific function during cholestasis, however, has not yet been established. Therefore, in our present study, we investigated the role of JNK1/2 during cholestasis and dissected its hepatocyte-specific function. Methods: A cohort of patients with primary biliary cholangitis (n = 29) and primary sclerosing cholangitis (n = 37) was examined. Wild-type, hepatocyte-specific knockout mice for Jnk2 (Jnk2Δhepa) or Jnk1 and Jnk2 (Jnk1Δhepa/2Δhepa) were generated. Mice were subjected to bile duct ligation (BDL) or carbon tetrachloride (CCl4) treatment. Finally, Apelin signalling was blocked using a specific inhibitor. As an interventional approach, Jnk1/2 were silenced in wild-type mice using lipid nanoparticles for small interfering RNA delivery. Results: JNK activation was increased in liver specimens from patients with chronic cholestasis (primary biliary cholangitis and primary sclerosing cholangitis) and in livers of Mdr2-/- and BDL-treated animals. In Jnk1Δhepa/2Δhepa animals, serum transaminases increased after BDL, and liver histology demonstrated enhanced cell death, compensatory proliferation, hepatic fibrogenesis, and inflammation. Furthermore, microarray analysis revealed that hepatocytic Jnk1/2 ablation induces JNK-target genes involved in oxidative stress and Apelin signalling after BDL. Consequently, blocking Apelin signalling attenuated BDL-induced liver injury and fibrosis in Jnk1Δhepa/2Δhepa mice. Finally, we established an interventional small interfering RNA approach of selective Jnk1/2 targeting in hepatocytes in vivo, further demonstrating the essential protective role of Jnk1/2 during cholestasis. Conclusions: Jnk1 and Jnk2 work together to protect hepatocytes from cholestatic liver disease by controlling Apelin signalling. Dual modification of JNK signalling in hepatocytes is feasible, and enhancing its expression might be an attractive therapeutic approach for cholestatic liver disease. Impact and Implications: The cell-specific function of Jnk genes during cholestasis has not been explicitly explored. In this study, we showed that combined Jnk1/2, but not Jnk2 deficiency, in hepatocytes exacerbates liver damage and fibrosis by enhancing Apelin signalling, which contributes to cholestasis progression. Combined cell-specific Jnk targeting may be a new molecular strategy for treating cholestatic liver disease.

11.
Biomolecules ; 13(8)2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627318

RESUMO

Ovarian clear cell (OCCC) and endometrioid (EnOC) carcinomas are often subsumed under the umbrella term "endometriosis-associated ovarian cancer" (EAOC), since they frequently arise from ectopic endometrium settled in the ovaries. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is known to be aberrantly activated both in endometriosis and EAOC; however, its role in the progression of endometriosis to ovarian cancer remains unclear. In fact, cancer-associated alterations in the mTOR pathway may be found in normal uterine epithelium, likely acting as a first step towards ovarian cancer, through the intermediary stage of endometriosis. This review aims to summarize the current knowledge regarding mTOR signaling dysregulation in the uterine endometrium, endometriosis, and EAOC while focusing on the interconnections between the PI3K/AKT/mTOR pathway and other signaling molecules that give rise to synergistic molecular mechanisms triggering ovarian cancer development in the presence of endometriosis.


Assuntos
Carcinoma , Endometriose , Neoplasias Ovarianas , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR , Fosfatidilinositol 3-Quinase
12.
Br J Cancer ; 129(8): 1225-1237, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37620408

RESUMO

BACKGROUND: Pancreatic neuroendocrine tumors (PNETs) represent a distinct hypervascularized tumor entity, often diagnosed at metastatic stage. Therapeutic efficacy of anti-angiogenic multi-kinase inhibitors is frequently limited by primary or acquired resistance in vivo. This study aimed to characterize the molecular mode of action as well as resistance mechanisms to the anti-angiogenic multi-tyrosine kinase inhibitor (TKI) Regorafenib in vitro and in vivo. METHODS: In vitro, human and murine pancreatic neuroendocrine cell lines were comparatively treated with Regorafenib and other TKIs clinically used in PNETs. Effects on cell viability and proliferation were analyzed. In vivo, transgenic RIP1Tag2 mice were treated with Regorafenib at two different time periods during carcinogenesis and its impact on angiogenesis and tumor progression was evaluated. RESULTS: Compared to the established TKI therapies with Sunitinib and Everolimus, Regorafenib showed the strongest effects on cell viability and proliferation in vitro, but was unable to induce apoptosis. Unexpectedly and in contrast to these in vitro findings, Regorafenib enhanced proliferation during early tumor development in RIP1Tag2 mice and had no significant effect in late tumor progression. In addition, invasiveness was increased at both time points. Mechanistically, we could identify an upregulation of the pro-survival protein Bcl-2, the induction of the COX2-PGE2-pathway as well as the infiltration of CSF1R positive immune cells into the tumors as potential resistance mechanisms following Regorafenib treatment. DISCUSSION: Our data identify important tumor cell-autonomous and stroma-dependent mechanisms of resistance to antiangiogenic therapies.


Assuntos
Tumores Neuroectodérmicos Primitivos , Camundongos , Humanos , Animais , Camundongos Transgênicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Carcinogênese/genética , Tumores Neuroectodérmicos Primitivos/tratamento farmacológico , Linhagem Celular Tumoral
13.
Expert Rev Mol Diagn ; 23(7): 583-588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409376

RESUMO

INTRODUCTION: Due to the limited number of studies focusing on the optimal treatment of multiple Krukenberg tumor (KT)-gastric carcinoma (KT - GC), it is necessary to conduct large-scale studies to confirm the definite role of serum tumor markers in the diagnosis and prognosis of KT. Moreover, the clinical significance of variant 6 of CD44 (CD44v6) in transcoelomic metastasis should be considered. AREAS COVERED: This review covers molecular pre-cancer diagnosis, gastric carcinoma metastasis, and anti-cancer treatments. Additionally, gastrointestinal cancer metastasis is a key area for improvement. EXPERT OPINION: The detection of CD44v6 differs in the World Health Organization Classification of Gastric Adenocarcinoma, the Lauren Classification of Gastric Adenocarcinoma, and the anatomic location of gastric adenocarcinoma. The results were compared among the three groups. The mechanism of gastric adenocarcinoma metastasis still requires further elucidation. CD44v6 molecular detection helps clarify the pre-cancer diagnosis of KT before seeding. If subsequent studies confirm its role as a signaling molecule, it could pave the way for new research directions in clinical practice; however, additional academic confirmation is necessary.


Assuntos
Adenocarcinoma , Carcinoma , Tumor de Krukenberg , Neoplasias Ovarianas , Neoplasias Gástricas , Feminino , Humanos , Tumor de Krukenberg/diagnóstico , Tumor de Krukenberg/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Biomarcadores Tumorais
14.
Am J Pathol ; 193(9): 1284-1297, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301535

RESUMO

The atypical protein kinase/ATPase RIO kinase (RIOK)-1 is involved in pre-40S ribosomal subunit production, cell-cycle progression, and protein arginine N-methyltransferase 5 methylosome substrate recruitment. RIOK1 overexpression is a characteristic of several malignancies and is correlated with cancer stage, therapy resistance, poor patient survival, and other prognostic factors. However, its role in prostate cancer (PCa) is unknown. In this study, the expression, regulation, and therapeutic potential of RIOK1 in PCa were examined. RIOK1 mRNA and protein expression were elevated in PCa tissue samples and correlated with proliferative and protein homeostasis-related pathways. RIOK1 was identified as a downstream target gene of the c-myc/E2F transcription factors. Proliferation of PCa cells was significantly reduced with RIOK1 knockdown and overexpression of the dominant-negative RIOK1-D324A mutant. Biochemical inhibition of RIOK1 with toyocamycin led to strong antiproliferative effects in androgen receptor-negative and -positive PCa cell lines with EC50 values of 3.5 to 8.8 nmol/L. Rapid decreases in RIOK1 protein expression and total rRNA content, and a shift in the 28S/18S rRNA ratio, were found with toyocamycin treatment. Apoptosis was induced with toyocamycin treatment at a level similar to that with the chemotherapeutic drug docetaxel used in clinical practice. In summary, the current study indicates that RIOK1 is a part of the MYC oncogene network, and as such, could be considered for future treatment of patients with PCa.


Assuntos
Genes myc , Neoplasias da Próstata , Masculino , Humanos , Proteínas Quinases/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Toiocamicina/farmacologia , Toiocamicina/uso terapêutico , Proliferação de Células , Neoplasias da Próstata/patologia , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
15.
Mol Cancer ; 22(1): 89, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37248468

RESUMO

AIM: Chemoresistance is a major cause of treatment failure in colorectal cancer (CRC) therapy. In this study, the impact of the IGF2BP family of RNA-binding proteins on CRC chemoresistance was investigated using in silico, in vitro, and in vivo approaches. METHODS: Gene expression data from a well-characterized cohort and publicly available cross-linking immunoprecipitation sequencing (CLIP-Seq) data were collected. Resistance to chemotherapeutics was assessed in patient-derived xenografts (PDXs) and patient-derived organoids (PDOs). Functional studies were performed in 2D and 3D cell culture models, including proliferation, spheroid growth, and mitochondrial respiration analyses. RESULTS: We identified IGF2BP2 as the most abundant IGF2BP in primary and metastastatic CRC, correlating with tumor stage in patient samples and tumor growth in PDXs. IGF2BP2 expression in primary tumor tissue was significantly associated with resistance to selumetinib, gefitinib, and regorafenib in PDOs and to 5-fluorouracil and oxaliplatin in PDX in vivo. IGF2BP2 knockout (KO) HCT116 cells were more susceptible to regorafenib in 2D and to oxaliplatin, selumitinib, and nintedanib in 3D cell culture. Further, a bioinformatic analysis using CLIP data suggested stabilization of target transcripts in primary and metastatic tumors. Measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) revealed a decreased basal OCR and an increase in glycolytic ATP production rate in IGF2BP2 KO. In addition, real-time reverse transcriptase polymerase chain reaction (qPCR) analysis confirmed decreased expression of genes of the respiratory chain complex I, complex IV, and the outer mitochondrial membrane in IGF2BP2 KO cells. CONCLUSIONS: IGF2BP2 correlates with CRC tumor growth in vivo and promotes chemoresistance by altering mitochondrial respiratory chain metabolism. As a druggable target, IGF2BP2 could be used in future CRC therapy to overcome CRC chemoresistance.


Assuntos
Neoplasias Colorretais , Humanos , Oxaliplatina/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
16.
Front Oncol ; 13: 1129627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114125

RESUMO

Glioblastoma (GBM) heterogeneity, aggressiveness and infiltrative growth drastically limit success of current standard of care drugs and efficacy of various new therapeutic approaches. There is a need for new therapies and models reflecting the complex biology of these tumors to analyze the molecular mechanisms of tumor formation and resistance, as well as to identify new therapeutic targets. We established and screened a panel of 26 patient-derived subcutaneous (s.c.) xenograft (PDX) GBM models on immunodeficient mice, of which 15 were also established as orthotopic models. Sensitivity toward a drug panel, selected for their different modes of action, was determined. Best treatment responses were observed for standard of care temozolomide, irinotecan and bevacizumab. Matching orthotopic models frequently show reduced sensitivity, as the blood-brain barrier limits crossing of the drugs to the GBM. Molecular characterization of 23 PDX identified all of them as IDH-wt (R132) with frequent mutations in EGFR, TP53, FAT1, and within the PI3K/Akt/mTOR pathway. Their expression profiles resemble proposed molecular GBM subtypes mesenchymal, proneural and classical, with pronounced clustering for gene sets related to angiogenesis and MAPK signaling. Subsequent gene set enrichment analysis identified hallmark gene sets of hypoxia and mTORC1 signaling as enriched in temozolomide resistant PDX. In models sensitive for mTOR inhibitor everolimus, hypoxia-related gene sets reactive oxygen species pathway and angiogenesis were enriched. Our results highlight how our platform of s.c. GBM PDX can reflect the complex, heterogeneous biology of GBM. Combined with transcriptome analyses, it is a valuable tool in identification of molecular signatures correlating with monitored responses. Available matching orthotopic PDX models can be used to assess the impact of the tumor microenvironment and blood-brain barrier on efficacy. Our GBM PDX panel therefore represents a valuable platform for screening regarding molecular markers and pharmacologically active drugs, as well as optimizing delivery of active drugs to the tumor.

17.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047153

RESUMO

Glioblastoma is the most common malignant brain tumor in adults. Standard treatment includes tumor resection, radio-chemotherapy and adjuvant chemotherapy with temozolomide (TMZ). TMZ methylates DNA, whereas O6-methylguanine DNA methyltransferase (MGMT) counteracts TMZ effects by removing the intended proteasomal degradation signal. Non-functional MGMT mediates the mismatch repair (MMR) system, leading to apoptosis after futile repair attempts. This study investigated the associations between MGMT promoter methylation, MGMT and MMR protein expression, and their effect on overall survival (OS) and progression-free survival (PFS) in patients with glioblastoma. MGMT promoter methylation was assessed in 42 treatment-naïve patients with glioblastoma WHO grade IV by pyrosequencing. MGMT and MMR protein expression was analyzed using immunohistochemistry. MGMT promoter methylation was present in 52%, whereas patients <70 years of age revealed a significantly longer OS using a log-rank test and a significance threshold of p ≤ 0.05. MGMT protein expression and methylation status showed no correlation. MMR protein expression was present in all patients independent of MGMT status and did not influence OS and PFS. Overall, MGMT promoter methylation implicates an improved OS in patients with glioblastoma aged <70 years. In the elderly, the extent of surgery has an impact on OS rather than the MGMT promoter methylation or protein expression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Idoso , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Intervalo Livre de Progressão , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Metilação , Reparo de Erro de Pareamento de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Metilação de DNA , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
18.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982604

RESUMO

The brain's extracellular matrix (ECM) is assumed to undergo rearrangements in Alzheimer's disease (AD). Here, we investigated changes of key components of the hyaluronan-based ECM in independent samples of post-mortem brains (N = 19), cerebrospinal fluids (CSF; N = 70), and RNAseq data (N = 107; from The Aging, Dementia and TBI Study) of AD patients and non-demented controls. Group comparisons and correlation analyses of major ECM components in soluble and synaptosomal fractions from frontal, temporal cortex, and hippocampus of control, low-grade, and high-grade AD brains revealed a reduction in brevican in temporal cortex soluble and frontal cortex synaptosomal fractions in AD. In contrast, neurocan, aggrecan and the link protein HAPLN1 were up-regulated in soluble cortical fractions. In comparison, RNAseq data showed no correlation between aggrecan and brevican expression levels and Braak or CERAD stages, but for hippocampal expression of HAPLN1, neurocan and the brevican-interaction partner tenascin-R negative correlations with Braak stages were detected. CSF levels of brevican and neurocan in patients positively correlated with age, total tau, p-Tau, neurofilament-L and Aß1-40. Negative correlations were detected with the Aß ratio and the IgG index. Altogether, our study reveals spatially segregated molecular rearrangements of the ECM in AD brains at RNA or protein levels, which may contribute to the pathogenic process.


Assuntos
Doença de Alzheimer , Neurocam , Humanos , Brevicam/metabolismo , Agrecanas/metabolismo , Neurocam/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Matriz Extracelular/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo
19.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36917178

RESUMO

Glioblastomas are among the deadliest human cancers and are highly vascularized. Angiogenesis is dynamic during brain development, almost quiescent in the adult brain but reactivated in vascular-dependent CNS pathologies, including brain tumors. The oncofetal axis describes the reactivation of fetal programs in tumors, but its relevance in endothelial and perivascular cells of the human brain vasculature in glial brain tumors is unexplored. Nucleolin is a regulator of cell proliferation and angiogenesis, but its roles in the brain vasculature remain unknown. Here, we studied the expression of Nucleolin in the neurovascular unit in human fetal brains, adult brains, and human gliomas in vivo as well as its effects on sprouting angiogenesis and endothelial metabolism in vitro. Nucleolin is highly expressed in endothelial and perivascular cells during brain development, downregulated in the adult brain, and upregulated in glioma. Moreover, Nucleolin expression correlated with glioma malignancy in vivo. In culture, siRNA-mediated Nucleolin knockdown reduced human brain endothelial cell (HCMEC) and HUVEC sprouting angiogenesis, proliferation, filopodia extension, and glucose metabolism. Furthermore, inhibition of Nucleolin with the aptamer AS1411 decreased brain endothelial cell proliferation in vitro. Mechanistically, Nucleolin knockdown in HCMECs and HUVECs uncovered regulation of angiogenesis involving VEGFR2 and of endothelial glycolysis. These findings identify Nucleolin as a neurodevelopmental factor reactivated in glioma that promotes sprouting angiogenesis and endothelial metabolism, characterizing Nucleolin as an oncofetal protein. Our findings have potential implications in the therapeutic targeting of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Glioma/metabolismo , Fosfoproteínas/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia
20.
Cell Mol Neurobiol ; 43(6): 2909-2923, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36920627

RESUMO

Iron is known to accumulate in neurological disorders, so a careful balance of the iron concentration is essential for healthy brain functioning. An imbalance in iron homeostasis could arise due to the dysfunction of proteins involved in iron homeostasis. Here, we focus on ferritin-the primary iron storage protein of the brain. In this study, we aimed to improve a method to measure ferritin-bound iron in the human post-mortem brain, and to discern its distribution in particular cell types and brain regions. Though it is known that glial cells and neurons differ in their ferritin concentration, the change in the number and distribution of iron-filled ferritin cores between different cell types during autolysis has not been revealed yet. Here, we show the cellular and region-wide distribution of ferritin in the human brain using state-of-the-art analytical electron microscopy. We validated the concentration of iron-filled ferritin cores to the absolute iron concentration measured by quantitative MRI and inductively coupled plasma mass spectrometry. We show that ferritins lose iron from their cores with the progression of autolysis whereas the overall iron concentrations were unaffected. Although the highest concentration of ferritin was found in glial cells, as the total ferritin concentration increased in a patient, ferritin accumulated more in neurons than in glial cells. Summed up, our findings point out the unique behaviour of neurons in storing iron during autolysis and explain the differences between the absolute iron concentrations and iron-filled ferritin in a cell-type-dependent manner in the human brain. The rate of loss of the iron-filled ferritin cores during autolysis is higher in neurons than in glial cells.


Assuntos
Ferritinas , Ferro , Humanos , Ferro/metabolismo , Ferritinas/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...